ABINIT School 2019
A newcomer-oriented school to ab initio nanoscience simulations
January 21-25, 2019 - Bruyères-le-Châtel, France

TUNING ABINIT

SPEED-UP \hspace{1cm} PRECISION \hspace{1cm} CONVERGENCE

Marc Torrent
CEA, DAM, DIF, France
ABINIT: precision vs speed

- Precision, accuracy, speed
- What can be tuned in a plane-wave DFT code?
- Automatic tuning

Speeding-up ABINIT

- Basics: discretization, size
- Advanced

Helping ABINIT to converge…

- Mixing of the density
- Optimization of the wave-functions
- Brillouin zone sampling
ABINIT
PRECISION VS SPEED
Properties needing precision
- Fine comparisons of energies
- Derivatives of the energy: forces, stresses, phonons, pressure...
- Structural relaxation (forces)
- Wave-functions in view of excited states/response function
- Magnetism
- Etc.

Properties needing speed
- Molecular Dynamics
- High-throughput computing (mass calculations)

By default, ABINIT settings favor precision
By tuning the input parameters, you can increase precision:

- Get more significant digits
- Increase the size of the basis
- Do more iterations

... not accuracy

Calculations (PAW) are supposed to match all-electron calculations, not experiment

Accuracy can be improved by:
- changing the pseudopotential (change frozen-core)
- adding more physics in the theory (e.g. more sophisticated exchange/correlation, exact exchange, ...)

...
ACCURACY VS PRECISION

Fig. 1 Historical evolution of the predicted equilibrium lattice parameter for silicon.

Lejaeghere et al., Science 351 (2016)
Electronic density formula

\[
\rho(\vec{r}) = \sum_{\sigma \text{ spins}} \sum_{n \text{ Bands}} \int_{\text{Reciprocal space}} f_{nk} \left(\sum_{\text{Plane waves}} C_{n,k}(\vec{g}) \cdot e^{i(k+\vec{g})\vec{r}} \right)^2 \cdot d\vec{k}
\]
PRECISION IN DFT CODES - CONVERGENCE

- Hamiltonian
 - Local
 - Non-local
 - Kinetic

- Eigenvalue problem
 - Iterative algorithm

- Wave-functions
 - Choice of algorithm
 - Number of iterations
 - Which wave-functions? (occupied?, s,p,d,f?)

- Mixing of iterations
 - Improve cycle convergence

- Density

- Convergence check?

- Energy and forces
 - Diagonalization in eigenvectors subspace

- Non self-consistent iterations if necessary

Tolerance required on energy/forces/etc.
PLANE WAVE DFT - WHERE DO WE SPEND TIME?

Time = (number of iterations) x (time spent in iterations)

Mixing scheme
Preconditioning
Size of history

Application of the Hamiltonian
FFT, linear Algebra

Number of iterations
of the diagonalization algorithm

Density
Hamiltonian
Local Non-local Kinetic

Eigenvalue problem
Iterative algorithm

Wave functions
Diagonalization in eigenvectors subspace

Convergence check?
Energy and forces

Mixing of iterations
Improve cycle convergence

Non self-consistent iterations if necessary

Number of iterations
of the self-consistent cycle
Improve speed, decrease precision…

- Decrease the cost of the Hamiltonian application
 - Less plane-waves
 - Smaller FFTs
- Decrease the sampling of the reciprocal space
 - Less k-points
- Decrease the number of required significant digits
 - Increase the tolerance(s)

...or the contrary

Warning!
Tolerance should always be chosen according to the property of interest
Improve speed… without decreasing precision

- Use parallelism
- Decrease the number of empty bands
- Improve the efficiency of the SCF cycle
 - Improve efficiency of the mixing scheme
 - Decrease the number of iterations
- Improve the efficiency of the iterative diagonalization
 - Fine tune the parameters of the algorithm
Automatic tuning - Pros
- It’s convenient!
- It’s a good starting point
- Manual tuning is a challenging task

Automatic tuning - Cons
- It is not optimal for all systems
- Some problem can be hidden
accuracy

Mnemonics: ACCURACY

Mentioned in topic(s): topic_Planewaves, topic_SCFCcontrol

Variable type: integer

Dimensions: scalar

Default value: 0

![Test list (click to open). Moderately used, [16/998] in all abinit tests, [3/117] in abinit tutorials](image)

Allows to tune the accuracy of a calculation by setting automatically the variables according to the following table:

<table>
<thead>
<tr>
<th>accuracy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>

- **accuracy = 1**: precision is low
 - Intended for use in Molecular Dynamics

- **accuracy = 6**: precision is high
 - Designed to prepare response function calculations

- **accuracy = 0**: precision is medium
 - "Automatic ecut" not activated

accuracy=4

Default ABINIT behavior
Default values for plane wave cut-off energy

- Default values for `ecut` variable **can be** read from the PAW pseudo potential file.
- Only if `accuracy` and `PAW` are activated.
- Only with the “JTH” atomic data table (www.abinit.org).
- 3 default precision values: *low, medium, high*
 - Choice made according to `accuracy` input variable.
- Values based on the comparison of the pure material Equation of States with all-electron results.
- No guarantee for alloys, oxides…
- To activate it: **don’t put** `ecut` **in the input file**
<?xml version="1.0"?>
<atom valence="3.00" core="10.00" Z="13.00" symbol="Al"/>
<pw_ecut high="15.00" medium="12.00" low="10.00"/>
<xc_functional name="PBE" type="GGA"/>
<generator name="atompaw-4.0.0.12" type="scalar-relativistic"/>
autoparal = 1 : automatic parallelization is on

ABINIT tries to determine the best distribution of processors on the different parallelization levels taking into account their respective efficient

- A simple heuristics is used
ABINIT – « AUTOPARAL » INPUT VARIABLE

Real Speedup

Predicted Speedup
SPEEDING-UP ABINIT
Find the best compromise between
- the time required for one SCF iteration
- the number of iterations

- Increasing the precision required for one iteration usually decreases the number of iterations but takes longer per iteration!

See “Helping ABINIT to converge” section
Using parallelism

See lecture on parallelism – See autoparal input variable

- ABINIT takes fully advantage of the parallelism
- Can be activated even on scalar computers
 Modern “processors” are multicore
- openMP (multi-threading) is MANDATORY with ABINIT v8.10, when available

Deactivating useless file access

- If you run only Ground-State calculations, wave-function file is not required
- Molecular Dynamics can be restarted without density/wave-functions, etc.
- Some files are used by specific post-processes (ex.: GSR file)

ABINIT input variables

- **prtwf**: printing of wave-function (can be deactivated)
- **prtden**: printing of wave-function (can be deactivated most of the time)
- **prtgsr**: printing of GSR file (can be deactivated if abipy is not used)
Discretization
- Decrease the plane-wave basis size
 - `ecut`: PW cut-off energy
- Decrease the sampling of the Brillouin zone
 - `ngkpt`: k-points sampling
- Decrease the size of the real space/FFT grid
 - `ngfft`: size of FFT grid

Size of the system
- Decrease the number of electronic states
 - (do not compute useless empty bands)
 - `nband`: number of bands
- Use a suitable pseudopotential
 - (do not treat semi-core states when unnecessary)

Warnings!
- Always check convergence (don’t use rule of thumb)
- Always check convergence with the studied property
- Some parameters depend on the chemical specie, some on the simulation cell
Always check the convergence with the studied properties!

- **Energy** – Use tolerance on the total energy (\textit{toldfe})
 Cohesive energy, barrier, phase stability, etc.

- **Forces (1)** – Use tolerance on all forces (\textit{toldff / tolrff})
 Molecular Dynamics

- **Forces (2)** – Use tolerance on the maximal force precision (\textit{tolmxf})
 Structural relaxation

- **Wave-functions** – Use tolerance on the WF residual (\textit{tolwfr})
 Preparation of excited states runs or response function runs

- **Other** – Use tolerance on the density/potential residual (\textit{tolvrs})
 A generalist criterion (good compromise)

ABINIT input variables

\textit{toldfe, toldff, tolrff, tolmxf, tolwfr, tolvrs}:

Tolerance criteria

Except for tolwfr, only one criterion can be used
Decrease the number of SCF iterations – tuning the mixing

See “Helping ABINIT to converge” section

- Adapt the density/potential mixing to the simulation cell
 - Metal, insulator, cristal, inhomogeneous material,
 - collinear magnetism, spin-orbit coupling, etc…

- The numerical behavior of the density during the SCF cycle
 is highly system dependent

- Number of iterations can be strongly decreased
 with a tuning of the mixing scheme

ABINIT input variables

- diemix, diemac: parameters for density residual preconditioning
- iscf, npulayit: parameters for density mixing
Decreasing the size of the real space/FFT grid

For an exact calculation, if the wave-function Ψ is expressed with all wave vectors up to $G_{cut}^2 \leq 2E_{cut}$, density should be expressed with wave-vectors up to $2G_{cut}$.

- N_{FFT} for density should be $2 \times N_{FFT}$ for wave-function.
- This ratio ($boxcutmin$ input variable) can be decreased without a significant loss of precision.
- Always check!
- Not suitable if you prepare excited state or response function…
- Very efficient on the execution time!

ABINIT input variables

- $boxcutmin$: ratio between wave-function and density FFT grids
Use shifted k-points grids

- There are optimal shifts for each Bravais lattice
- Much more efficient and less consuming than increasing the k-point density of one grid

ABINIT input variables

- `shiftk`, `nshiftk`: shifts to be applied to the k-points grid

 Default: one shift \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\)
HELPING ABINIT TO CONVERGE
SELF-CONSISTENT CYCLE

Density

Mixing of iterations

Improve cycle convergence

Hamiltonian

Local Non-local Kinetic

Eigenvalue problem

Iterative algorithm

Wave functions

Diagonalization in eigenvectors subspace

Convergence check?

Energy and forces

Non self-consistent iterations if necessary

Tuning ABINIT | Abinit School 2019
Mixing the density with the densities of previous iterations
=> Damping of the oscillations
Mixing the new iteration and previous one

- Density residual: \(\rho^{\text{RES}}(r) = \rho^{\text{OUT}}(r) - \rho^{\text{IN}}(r) \)
- If no mixing: \(\text{new } \rho(r) = \rho^{\text{IN}}(r) + \rho^{\text{RES}}(r) = \rho^{\text{OUT}}(r) \)

Preconditioning

Applying a transformation to \(\rho^{\text{RES}}(r) \) in order to damp instabilities

\(\rho^{\text{RES}}(r) \leftarrow P \rho^{\text{RES}}(r) \)

Mixing

Mixing the new density and previous ones (favor small residuals)

\(\text{new } \rho_{i+1}(r) = \rho_i^{\text{IN}}(r) + \underset{j \leq i}{\text{mix}} \left[\rho^{\text{OUT}}(r), P \rho^{\text{RES}}(r) \right] \)
Preconditioning

Use inverse of a model dielectric matrix

\[P(K) = \varepsilon^{-1}(K) = \text{diemix} \cdot \left(\frac{1}{\text{diemac}} + \text{dielng}^2 K^2 \right) / (1 + \text{dielng}^2 K^2) \]

\[\varepsilon = \frac{d\rho}{dV} \]

ABINIT input variables

- **diemix**: decrease to help convergence (but will slow it)
- **diemac**: huge for metals, 5-10 for insulators
- **dielng**: not really important (fine tuning)

Note:

- **iprcell**: use a more accurate “dielectric constant...
Mixing

Can mix density or potential – Default algorithm: Pulay algorithm

Can modify the size of the history (but a large history is memory-consuming)

\[
\text{new } \rho_{i+1}(r) = \rho_{i}^{IN}(r) + \sum_{j \leq i} \text{mix} \left[\rho_{j}^{OUT}(r), P\rho_{j}^{RES}(r) \right]
\]

\[
\text{new } V_{i+1}(r) = V_{i}^{IN}(r) + \sum_{j \leq i} \text{mix} \left[V_{j}^{OUT}(r), PV_{j}^{RES}(r) \right]
\]

ABINIT input variables

- **iscf**: 7 → mix the potential, 17 → mix the density

 Can change the behavior of the convergence

- **npulayit**: size of history of Pulay algorithm (default=7)

 Increasing the size can be very efficient (→ 30)
Better converge the wave-functions
=> Can reduce the Number of iterations
=> Each iteration takes more time
Convergence depends on:

- System of interest
- Iterative diagonalization (minimization) algorithm
Choice of algorithm

- **Conjugate Gradient**
 Default when no parallelization or k-points parallelization

- **Block conjugate gradient** (LOBPCG)
 Default when Band-FFT parallelization

- **Chebyshev Filtering**
 For a very large number of processors

ABINIT input variables

- `wfoptalg`: 0 → conjugate gradient
 114 → block conjugate gradient
 1 → Chebyshev filtering
Algorithm parameters

- Required tolerance on wave-functions
- Number of max. iterations
- Block Conjugate Gradient: size of the blocks
 - One block (size N_{band}) converges better than N_{band} blocks (size 1)
 - But can takes longer

ABINIT input variables

- **tolwfr**: Tolerance of Wave-Function residual
 Decreasing it improve convergence but takes longer.
- **nline**: number of iterations of the diagonalization algorithm
 Increasing it improves convergence but takes longer
- **bandpp**: Bands Per Proc
 Increase it to increase the size of blocks
Last chance if still no convergence…
- Run the diagonalization algorithm several times, resetting it
- **Increase the number of Non-Self-Consistent Iterations**

ABINIT input variables
- **nnscl0**: Number of Non Self-Consistent iterations
 Default: 2 iterations for steps 1 and 2, then 1 iteration
Empty bands do not converge as fast as occupied ones
- Depends on algorithm (CG, LOBPCG…)
- Last bands can really not converge
- Worst case: optimize partially an electron shell

Occupied bands
Few iterations to converge

Empty bands
Many iterations to converge
Solution:
- Change N_{band} in order to include all the states of the last shell.

ABINIT input variables
- **nband**: Number of BANDs to optimize
 - Warning (metals): check that last states are really empty!
Impact of sampling of Brillouin Zone:
- Many properties are obtained from an integral over the Brillouin Zone
- Magnetic moment is numerically sensitive

Smearing method:
- In metals, integral over Brillouin Zone are discontinuous at Fermi level
- Replace step function by a smoother function:
 - use a artificial electronic temperature
- Modification of the electronic occupations
Impact of sampling of Brillouin Zone:
- Many properties are obtained from an integral over the Brillouin Zone
- Magnetic moment is numerically sensitive

Solution:
- Find the right balance between smearing and sampling density

ABINIT input variables
- \texttt{nkpt/ngkpt/etc.}: number of k-points
- \texttt{occopt}: smearing scheme for occupations $3 \leq \text{occopt} \leq 7$
- \texttt{tsmear}: smearing temperature
CONCLUSION
ABINIT default settings favor precision

To run ABINIT faster, you can use the automatic method or the manual one

To help ABINIT to converge it is necessary to have a minimal knowledge of the internal algorithms
- Convergence cycles
- Mixing algorithms
- Discretization